Descobrindo perfis de tráfego de usuários: uma abordagem não supervisionada
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Rio de Janeiro
Brasil Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Pós-Graduação em Engenharia de Sistemas e Computação UFRJ |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/11422/13552 |
Resumo: | The increasing complexity of home networks calls for novel strategies towards e cient network management and workload characterization. In particular, understanding the characteristics of the tra c generated by users is of paramount importance for network planning. Previous work focuses primarily on Deep Packet Inspection (DPI) and/or considers pre-determined patterns to classify tra c ows and detect the application being accessed by users. In this work we use unsupervised machine learning techniques with the objective of discovering users’ tra c pro les. In partnership with an Internet Service Provider (ISP) we collected the download and upload tra c of more than 2,000 home routers of the ISP clients. We then use a tensor decomposition technique (PARAFAC) to extract relevant features from our network traces. We show how the results of PARAFAC and a hierarchical clustering algorithm simplify the task of grouping time series with similar daily tra c patterns. We also show how new users can be classi ed from the decision tree obtained with clustering. To characterize users’ behavior over periods longer than a day, we use the information of the clusters and a Hidden Markov Model (HMM). The results indicate that users tend to maintain a speci c pattern over time, facilitating network planning and management tasks. |