Sistema de navegação inercial para veículos baseado em aprendizado de máquina e correspondência de mapas

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Gomes, Lucas de Carvalho
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Elétrica
UFRJ
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11422/23216
Resumo: Nowadays, Global Navigation Satellite Systems (GNSS) are employed in various contexts of the daily life. They yield real-time location information for any vehicle or person bearing a receiver, through the communications by electromagnetic waves between itself and satellites. The performance of this positioning technique is subject to several environmental and technical factors. Furthermore, certain scenarios, such as canyons (urban or geographic), forests and tunnels, are particularly challenging, since the coverage in them is absent or scarcely reliable, producing rogue positioning information or even no information at all. Due to these factors, systems which depend on this information frequently deploy other sensing devices. However, reducing the amount of these devices may be beneficial, since it reduces costs and the energy consumption. Aiming to improve the reliability and the availability of systems based on satellite positioning, keeping, simultaneously, the cost-effectiveness, this work proposes a dead reckoning system, which employs the last known position and data from auxiliary sensors to estimate the current location. The sensors deployed here are available in commercial vehicles. The estimates are calculated by Machine Learning models and improved by a Map Matching procedure. The performance of this procedure was evaluated through computer simulations fed with real data of locations and sensors, keeping track of the system capability of reproducing trajectories in an urban scenario.