Double population cascaded lattice boltzmann method

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Sharma, Keerti Vardhan.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Química
UFRJ
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11422/12788
Resumo: Lattice Boltzmann Methods (LBM) are powerful numerical tools to simulate heat and mass transfer problems. Instead of directly integrating the N-S equations, LBM solves the discretized form of the Boltzmann Transport Equation (BTE), keeping track of the microscopic description of the systems. Therefore, LBM can solve fluid flows with great stability and computational efficiency, especially complex geometry fluid flows. For thermal flows, double distribution function (DDF) LBM scheme is the most popular and successful approach. But it is evident from the literature that existing double distribution function (DDF) LBM approaches, which use two collision operators, involve collision schemes which violate Galilean invariance, therefore producing instabilities for flows with high Re and Ra numbers. In this thesis, a double population cascaded lattice Boltzmann method is developed to improve the DDF LBM scheme from this drawback. The proposed method reduces the degree of violation of Galilean invariance, increasing the stability and accuracy of the LBM scheme. The scheme was implemented to simulate advection-diffusion, forced convection and natural convection heat transfer problems. The proposed scheme was also successfully tested for turbulent flow regimes and 3-D fluid flow in porous media. The results obtained from this work are in strong agreement with those available in the literature obtained through other numerical methods and experiments.