Line-of-sight-stabilization and tracking control for inertial platforms
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal do Rio de Janeiro
Brasil Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Pós-Graduação em Engenharia Elétrica UFRJ |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/11422/11684 |
Resumo: | Nowadays, line of sight stabilization and tracking using inertially stabilized platforms (ISPs) are still challenging engineering problems. With a growing demand for high-precision applications, more involved control techniques are necessary to achieve better performance. In this work, kinematic and dynamic models for a three degrees-of-freedom ISP are presented. These models are based in the vehicle-manipulator system (VMS) framework for modeling of robot manipulators operating in a mobile base (vehicles). The dynamic model follows the Euler-Lagrange formulation and is implemented by numeric simulations using the iterative Newton-Euler method. Two distinct control strategies for both stabilization and tracking are proposed: (i) computed torque control and (ii) sliding mode control using the recent SuperTwisting Algorithm (STA) combined with a High-Order Sliding Mode Observer (HOSMO). Simulations using data from a simulated vessel allow us to compare the performance of the computed torque controllers with respect to the commonly used P-PI controller. Besides, the results obtained for the sliding mode controllers indicate that the Super-Twisting algorithm offers ideal robustness to the vehicle motion disturbances and also to parametric uncertainties, resulting in a stabilization precision of approximately 0,8 mrad. |