On data augmentation techniques for the automatic detection of mosquito breeding grounds using videos
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal do Rio de Janeiro
Brasil Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Pós-Graduação em Engenharia Elétrica UFRJ |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/11422/22718 |
Resumo: | This work discusses data augmentation techniques for detecting mosquito breed- ing grounds using videos recorded by a drone. Firstly, a study regarding mosquito- related diseases is presented in order to propose a computer vision system capable of automatically detecting disease-related objects, such as water tanks, tires, and bottles. A database composed of six aerial videos containing breeding-related ob- jects is devised, including its planning and execution (recording and annotation) stages. However, due to the difficulty of obtaining extensive records of real sce- narios, artificial data augmentation techniques are presented. This work addresses three methods of inserting images of the objects into videos in order to increase the number of objects in the training set. Finally, a convolutional neural network detec- tor is used to evaluate these techniques, indicating that artificial data augmentation reduces overfitting, improving the overall detection performance by the proposed network. |