Caracterização experimental da separação gás-líquido em uma junção do tipo T inclinada

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Gavioli, Yasmin Soares
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Mecânica
UFRJ
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11422/5960
Resumo: The two-phase flows at a T-Junction is a common feature in many industrial processes, such as oil field flow lines, pipeline networks and refinery streams to divide or combine flows. When a gas-liquid mixture flows through a junction, the phases can be separated unevenly such that the qualities in the downstream legs are unequal. This work is focused on the experimental characterization of the dynamical properties of gas-liquid flow separation in a particular configuration of a T-Junction: inlet pipe inclined 10o downward and a vertical upward branch. The final purpose of this work is to generate a database to characterize the separation phenomenon at T-junction. The experimental apparatus is comprised by the splitting tee test section, which has an internal diameter of 70 mm (principal pipe) / 50 mm (vertical branch) and is made of Perspex to enable visualization studies. Diferent air and water flow rates were used to simulate stratified smooth and slug flow patterns. The inlet pipe and side branch were pressure-tapped to enable measurement of pressure distribution in each arm. The velocity profile and mean velocity of the liquid phase were characterized by means of Particle Image Velocimetry (PIV). A Shadow Sizer system and laser-based techniques were used to quantify the properties of the gas phase, such as bubble length and bubble velocity.