Reconhecimento de atividades em casas inteligentes: uma abordagem não intrusiva explorando processamento semântico

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Abreu, Eduardo Soares de
Orientador(a): Yamin, Adenauer Corrêa
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pelotas
Programa de Pós-Graduação: Programa de Pós-Graduação em Computação
Departamento: Centro de Desenvolvimento Tecnológico
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufpel.edu.br/handle/prefix/3842
Resumo: Nos últimos anos, as técnicas de Reconhecimento de Atividades têm atraído atenção crescente. Entre as muitas aplicações, um interesse especial está no domínio ubíquo da e-Health, onde o reconhecimento automático de atividades é usado em sistemas de reabilitação, gerenciamento de doenças crônicas, monitoramento de idosos, bem como em aplicações de bem-estar pessoal. Esse interesse tem tido como motivação o envelhecimento da população. Este envelhecimento resulta em significativos desafios socioeconômicos no setor da saúde pública, bem como na incidência de doenças crônico-degenerativas, sendo a demência uma das mais preocupantes. Uma alternativa que vem sendo amplamente proposta é a utilização de casas inteligentes (ambiente assistido de vivência), nos quais as residências das pessoas sob tratamento deverão contemplar serviços computacionais que possam auxiliá-las nas suas práticas diárias, de forma o mais transparente possível. Este trabalho tem como acrônimo EXEHDA-AR (EXEHDA-Activity Recognition), e seu objetivo principal é contribuir com o Subsistema de Reconhecimento de Contexto e Adaptação do middleware EXEHDA (Execution Environment for Highly Distributed Applications) capacitando-o para o atendimento das demandas do Reconhecimento de Atividades, explorando para isto uma abordagem baseada em Ciência de Contexto. O EXEHDA-AR explora processamento semântico para prover Reconhecimento de Atividades em Casas Inteligentes, para tanto foram propostos componentes a serem integrados ao middleware EXEHDA, bem como um modelo ontológico. Os dados de contexto coletados são agrupados segundo o conceito de janela de tempo deslizante. Quando avaliado o EXEHDA-AR obteve uma acurácia média de 94,36% no Reconhecimento de Atividades. Estes resultados apontam que métodos baseados em processamento semântico constituem uma alternativa viável para o reconhecimento de Atividades com baixo nível de intrusão, indicando a continuidade dos esforços de pesquisa.