Desenvolvimento radicular de gramíneas perenes e sua eficiência na recuperação de atributos físicos de um solo construído compactado em área de mineração de carvão

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Stumpf, Lizete
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pelotas
Faculdade de Agronomia Eliseu Maciel
Programa de Pós-Graduação em Agronomia
UFPel
Brasil
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufpel.edu.br/handle/prefix/3048
Resumo: The constructed soil development in mined areas provides an opportunity to expand the existing knowledge on the formation and stabilization of aggregates, as well as on the accumulation and distribution of organic matter and microbial biomass, since due to the magnitude of ecosystem disturbance, it creates a scenario of "zero time". Scientific research on the recovery of degraded areas has attributed to the root system of plants many of the improvements in physical, chemical and biological soil attributes; however, few studies have been done to prove that such behavior is real. Therefore, the overall objective of this study is to analyze the root development of perennial grasses in minesoils constructed after coal mining and relate the results of the physical and chemical soil attributes after 103 months of establishment of plant species. The soil was constructed in early 2003 and the treatments started in November/December 2003. The plants species evaluated were Hemarthria altissima, Paspalum notatum cv. Pensacola, Cynodon dactylon cv Tifton, and Urochloa brizantha. In order to evaluate changes due to soil construction and the estimated recovery time of the attributes of the new formed profile, a natural soil under native vegetation was used as reference. Sixteen (4x4) soil monoliths to a depth of 0.30m were taken for root sampling, 96 undisturbed samples and 48 disturbed samples were taken to a depth of 0.30m for determining soil attributes. After 103 months of revegetation, the roots of grasses are promoting the recovery of physical conditions along the 0.00 to 0.10m soil layer, through the formation of new aggregates, the decrease in soil bulk density and soil penetration resistance and increased soil macroporosity. The decrease in root development and the flattening of the roots of all species reflect the inadequate soil physical below the 0.00 to 0.10m layer due to the presence of aggregates formed originally by compression, high bulk density and soil resistance to penetration and low macroporosity. Below 0.20m depth, even in the presence of spoils with active sulfurization process, it is observed the presence of a small proportion of roots. Regardless of the layer evaluated, all the plant species showed higher concentration of roots with diameter from 0.25 to 0.49mm, considered very fine. However, in the layers beneath 0.00-0.10m the Urochloa brizantha increased emission of roots with diameter from 0.50 to 0.99mm, while Hemarthria altissima, the Paspalum notatum, Cynodon dactylon increased even more the roots with diameter between 0.25 to 0.49mm. Among the species, Urochloa brizantha stands out for its higher density, volume, area and root length, thus presenting a greater potential to recover the physical attributes of constructed soils from degraded areas by coal mining, especially those below the surface layer of 0.00 to 0.10m. The indication of this and other species for the recovery of soils constructed after coal mining should take into account the thickness of the topsoil layer placed over the overburden, because the roots of these species have potential to deepen their root system and thus accelerate the sulfurization process. In the first 0.20m layer of the constructed soil the chemical attributes are suitable for root development. Low carbon content in free light and occluded light fractions from 0.00 to 0.20m are related to degradation of soil structure, which hinders root development in depth, as well as the presence of soil organisms responsible for transforming the root residues in organic matter. A recovery of physical attributes of constructed soil, mainly below of 0,00-0.10-0.20m layer, proves to be slow compared to the attributes of a natural soil, possibly due to the low initial contribution of organic carbon in the system.