ReDId: simulação de computação quântica baseada em redução e decomposição via Operador Identidade

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Avila, Anderson Braga de
Orientador(a): Reiser, Renata Hax Sander
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pelotas
Programa de Pós-Graduação: Programa de Pós-Graduação em Computação
Departamento: Centro de Desenvolvimento Tecnológico
País: Brasil
Palavras-chave em Português:
GPU
Área do conhecimento CNPq:
Link de acesso: http://guaiaca.ufpel.edu.br/handle/prefix/8485
Resumo: Um dos maiores obstáculos para a simulação de algoritmos quânticos é o crescimento exponencial das complexidades espaciais e temporais, devido à expansão das transformações e dos estados de leitura/escrita que ocorrem principalmente pelo uso do produto tensor em aplicações multidimensionais. A simulação destes sistemas é muito relevante para desenvolver e testar novos algoritmos quânticos. Para minimizar o problema gerado pela alta complexidade da simulação de algoritmos quânticos, este trabalho apresenta uma nova estratégia denominada ReDId – Quantum Computing Simulation based on Reduction and Decomposition via Identity Operator, provendo otimizações baseadas na redução e decomposição via operador Identidade. Na sequência, o trabalho considera a implementação do algoritmo que faz uso da estratégia ReDId, explorando os componentes VPE-qGM e VirD-GM do ambiente D-GM, para desenvolvimento e de gerenciamento das simulações. Para validação, considera-se a aplicação das otimizações via estratégia ReDId nas simulações de transformações Hadamard de 21 a 28 qubits e de Transformadas de Fourier Quântica de 26 a 28 qubits. Estes algoritmos foram simulados sobre CPU, sequencialmente e em paralelo, e em GPU, mostrando redução da complexidade temporal e, consequentemente, menor tempo de simulação. As otimizações via REDId também foram avaliadas na execução do algoritmo de Shor, considerando neste caso o uso de 2n+3 qubits no algoritmo quântico para cálculo da ordem, simulados até 25 qubits. Ao comparar as implementações executando no mesmo hardware com o simulador LIQUi – Language-Integrated Quantum Operations, na versão disponível pela QuArC – Quantum Architectures and Computation Group da Microsoft Research, o simulador via estratégia ReDId mostrou melhor desempenho, permitindo ainda um significativo incremento no número de qubits das aplicações simuladas.