Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Bender, Alexandre Thurow |
Orientador(a): |
Araújo, Ricardo Matsumura de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Universidade Federal de Pelotas
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Computação
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://guaiaca.ufpel.edu.br/xmlui/handle/prefix/12892
|
Resumo: |
Coleções de dados obtidos ou gerados em condições semelhantes são chama das de domínios ou fontes de dados. As condições distintas de aquisição ou geração de dados são muitas vezes negligenciadas, mas compreendê-las é vital para abordar quaisquer fenômenos emergentes dessas diferenças que possam impedir a generalização de modelos. O aprendizado multidomínio busca a melhor forma de treinar um modelo para que ele tenha um desempenho adequado em todos os domínios utilizados durante o treinamento. Este trabalho explora técnicas de aprendizado multidomínio que usam informações explícitas sobre o domínio de um exemplo, além de sua classe. Este estudo avalia uma abordagem geral (Stew) misturando todos os dados disponíveis e também dois métodos de regularização de domínios: Balanced Domains e Loss Sum. Treinamos modelos de aprendizado de máquina com as abordagens listadas usando conjuntos de dados com múltiplas fontes para tarefas de classificação de áudio. Os resultados sugerem que treinar um modelo usando o método Loss Sum melhora a performance de modelos anteriormente treinados em uma mistura de todos os dados disponíveis. |