Propriedades estruturais e eletrônicas de novos sistemas de perovskitas calcogênicas com potencial para aplicações fotovoltaicas/optoeletrônicas

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Venzke, Cristiane Schwartz
Orientador(a): Moreira, Mário Lúcio
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pelotas
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência e Engenharia de Materiais
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://guaiaca.ufpel.edu.br/xmlui/handle/prefix/9974
Resumo: Perovskitas calcogênicas são materiais propostos para aplicações eletrônicas e ópticas devido a sua estrutura eletrônica. O estudo de sistemas de perovskitas não óxidas foi abordado neste trabalho visando explorar propriedades estruturais, eletrônicas e vibracionais destes sistemas, tendo por objetivo analisar qual material seria promissor para futuras aplicações fotovoltaicas/optoeletrônicas. Além do sistema baseado em oxigênio, também foram estudados sistemas com substituições totais no ânion O partindo do composto MgTiO3 (MTO), uma perovskita óxida muito conhecida na literatura. Para isso, escolheu-se outros elementos da família dos calcogênios presentes na tabela periódica; criando os sistemas MgTiS, MgTiSe, MgTiTe. Sendo a escolha destes derivada de sistemas similares. As propriedades estruturais, eletrônicas e vibracionais de tais sistemas foram tratadas usando simulações mecânico quânticas baseadas na Teoria do Funcional da Densidade (TFD), combinada com o funcional de troca e correlação PBE. Todos os sistemas investigados foram tratados computacionalmente por meio do pacote computacional Crystal17, utilizando bases pseudopotenciais e all electron, com intuito de melhorar a precisão dos dados obtidos. Os resultados mostraram ser positivas as substituições com a criação de novos sistemas que apresentaram menores valores de banda proibida, mais propícios a aplicações que envolvam conversão de energia solar. No caso do MgTiS, o gap foi reduzido para 1,58eV, para o MgTiSe o gap foi reduzido para 0,89eV e para o MgTiTe o gap chegou a 0,09eV. Assim a substituição de oxigênio por enxofre mostra-se a mais favorável para a aplicação desejada.