Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
FIGUEIRÔA, Luiz Henrique Alves |
Orientador(a): |
LIMA, Manoel Eusébio de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Ciencia da Computacao
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/16317
|
Resumo: |
A partir da revelação da estrutura em dupla-hélice do DNA, em 1953, foi aberto o caminho para a compreensão dos mecanismos que codificam as instruções de construção e desenvolvimento das células dos seres vivos. A nova geração de sequenciadores (NGS) têm produzido gigantescos volumes de dados nos Bancos de Dados biológicos cujas informações podem demandar uma intensa atividade computacional em sua compilação. Entretanto, o desempenho das ferramentas empregadas na Biologia Computacional não tem evoluído na mesma taxa de crescimento desses bancos, podendo impor restrições aos avanços neste campo de pesquisa. Uma das principais técnicas usadas é o alinhamento de sequências que, a partir da identificação de similaridades, possibilitam a análise de regiões conservadas em sequências homólogas, servem como ponto de partida no estudo de estruturas secundárias de proteínas e de construção de àrvores filogenéticas, entre outros. Como os algoritmos exatos de alinhamento possuem complexidade quadrática no tempo e no espaço, o custo computacional poderá ser elevado demandando estratégias de aceleração. Neste contexto, a Computação de Alto Desempenho (HPC), estruturada em Supercomputadores e Clusters, tem sido, empregada. No entanto, o investimento inicial e os requisitos de manutenção, espaço físico, refrigeração, além do consumo de energia, podem representar custos significativos. As arquiteturas paralelas híbridas baseadas na ação conjunta de PCs e dispositivos aceleradores como chips VLSI, GPGPUs e FPGAs, surgiram como alternativas mais acessíveis, apresentando resultados promissores. O projeto descrito nesta dissertação tem por objetivo a aceleração do algoritmo de alinhamento-ótimo global, conhecido como Needleman-Wunsch, a partir de uma plataforma híbrida baseada em um PC (host) e um FPGA. A aceleração ocorre a partir da exploração das possibilidades de paralelismo oferecidas pelo algoritmo e sua implementação em hardware. A arquitetura desenvolvida é baseada num Array Sistólico Linear apresentando elevado desempenho e boa escalabilidade. |