Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
SOUTO MAIOR, Caio Bezerra |
Orientador(a): |
LINS, Isis Didier |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Engenharia de Producao
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/24930
|
Resumo: |
The useful life time of equipment is an important variable related to reliability and maintenance. The knowledge about the useful remaining life of operation system by means of a prognostic and health monitoring could lead to competitive advantage to the corporations. There are numbers of models trying to predict the reliability’s variable behavior, such as the remaining useful life, from different types of signal (e.g. vibration signal), however several could not be realistic due to the imposed simplifications. An alternative to those models are the learning methods, used when exist many observations about the variable. A well-known method is Support Vector Machine (SVM), with the advantage that is not necessary previous knowledge about neither the function’s behavior nor the relation between input and output. In order to achieve the best SVM’s parameters, a Particle Swarm Optimization (PSO) algorithm is coupled to enhance the solution. Empirical Mode Decomposition (EMD) and Wavelets rise as two preprocessing methods seeking to improve the input data analysis. In this paper, EMD and wavelets are used coupled with PSO+SVM to predict the rolling bearing Remaining Useful Life (RUL) from a vibration signal and compare with the prediction without any preprocessing technique. As conclusion, EMD models presented accurate predictions and outperformed the other models tested. |