An investigation into the effects of label noise on dynamic selection algorithms

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: WALMSLEY, Felipe Nunes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso embargado
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/37647
Resumo: In the literature on classification problems, it is widely discussed how the presence of label noise can bring about severe degradation in performance. Several works have applied Prototype Selection techniques, Ensemble Methods, or both, in an attempt to alleviate this issue. Nevertheless, these methods are not always able to sufficiently counteract the effects of noise. In this work, we investigate the effects of noise on a particular class of Ensemble Methods, that of Dynamic Selection algorithms, and we are especially interested in the behavior of the Fire-DES++ algorithm, a state of the art algorithm which applies the ENN to algorithm to deal with the effects of noise and imbalance. We propose a method which employs multiple Dynamic Selection sets, based on the Bagging-IH algorithm, which we dub Multiple-Set Dynamic Selection (MSDS), in an attempt to supplant the ENN algorithm on the filtering step. We find that almost all methods based on Dynamic Selection are severely affected by the presence of label noise, with the exception of the KNORAU algorithm. We also find that our proposed method can alleviate the issues caused by noise in some specific scenarios.