Cálculos de múltipla conclusão para a lógica intuicionista sob uma perspectiva geométrica
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpe.br/handle/123456789/28009 |
Resumo: | Como verificar se uma prova clássica também é intuicionista? Em dedução natural basta não haver ocorrência da lei do terceiro excluído ou da eliminação da dupla negação, conforme proposto por Gentzen. No seu cálculo de sequentes o mesmo resultado é alcançado restringindo o número de fórmulas no lado direito a no máximo um. Assim não há múltiplaconclusão, embora esta seja importante para a simetria. Hoje já existem abordagens que levam isso em conta e propõem cálculos de sequentes para lógica intuicionista com várias fórmulas no consequente. Mas ainda que elas nos forneçam compreensões do que diferencia a lógica intuicionista da clássica, há o problema da burocracia inerente ao formalismo de Gentzen. Aqui separamos a lógica intuicionista da clássica em derivações não-sequenciais adotando uma abordagem geométrica. Propomos uma versão intuicionista para dois sistemas de múltipla conclusão inicialmente definidos apenas para a lógica clássica proposicional: os N-Grafos, apresentados por de Oliveira (2001) e baseado em dedução natural; e as proof-nets de Robinson (2003), inspiradas no cálculo de sequentes. |