Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
PIRES, Juliana Freitas |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/12246
|
Resumo: |
Nesta tese, tratamos de refinamentos de inferências para as distribuições gaussiana inversa triparamétrica, Pareto generalizada e Lomax. Duas linhas de pesquisa são abordadas. A primeira, referente ao Capítulo 2, trata da derivação de expressões analíticas para os vieses dos estimadores de máxima verossimilhança dos parâmetros da distribuição gaussiana inversa triparamétrica, possibilitando a obtenção de estimadores corrigidos, que, em princípio, são mais precisos que os não corrigidos. Estimadores com vieses corrigidos por bootstrap são também considerados. Adicionalmente, apresentamos diferentes tipos de intervalos de confiança. A segunda linha de pesquisa, referente aos Capítulos 3 e 4, aborda a derivação de ajustes para a função de verossimilhança perfilada das distribuições Pareto generalizada e Lomax, respectivamente, com o objetivo de melhorar a qualidade das inferências (estimadores de máxima verossimilhança e testes de hipóteses) acerca do parâmetro de forma dessas distribuições, considerando os demais parâmetros como parâmetros de perturbação. Adicionalmente, consideramos o teste da razão de verossimilhanças bootstrap. Os desempenhos dos estimadores e testes de hipóteses baseados nos refinamentos propostos foram avaliados numericamente e comparados às suas contrapartidas usuais através de estudos de simulação de Monte Carlo. Por fim, a utilidade dos refinamentos foi ilustrada através de aplicações a conjuntos de dados reais. |