Detalhes bibliográficos
Ano de defesa: |
2008 |
Autor(a) principal: |
Patrícia da Silva, kelly |
Orientador(a): |
de Assis Tenório Carvalho, Francisco |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/1677
|
Resumo: |
Com a crescente quantidade de informacões produzidas pelas diversas atividades humanas, tem se tornado cada vez mais importante agregar, tratar e manipular grandes massas de dados de modo a definir conceitos e extrair conhecimento destes dados. Esses conceitos podem ser descritos por dados mais complexos, chamados dados simbolicos. Nesse contexto, surge a necessidade de estender metodos exploratorios, estatisticos e representações graficas para lidar com esse tipo de dados, em que cada variavel pode assumir como valor um conjunto de categorias, intervalos ou distribuicões de probabilidades. A analise de dados simbolicos e definida como a extensão dos metodos de analise de dados classicos para tal tipo de dados. Com o intuito de estender metodos estatisticos e tecnicas de aprendizado de maquina a esse tipo de dados, e necessario definir medidas de distância apropriadas. Diversas medidas de distância têm sido propostas na literatura. No entanto, ainda existe na literatura uma carência de analises comparativas dos desempenhos de medidas de distância para dados simbolicos. A principal contribuicão desta Dissertacão e prover uma avaliacão empirica de funções de dissimilaridade para dados simbolicos no contexto de analise de agrupamento. Alem disso, foram propostas novas medidas de dissimilaridade para dados simbolicos. Com o intuito de atingir esses objetivos, foi desenvolvido um framework para agrupamento de dados simbolicos. Esse framework utiliza funções de dissimilaridade baseadas em volume e algoritmos de agrupamento de dados relacionais. Os experimentos foram executados com bases de dados de benchmark e duas bases de dados artificiais com diferentes graus de dificuldade de agrupamento. Os resultados obtidos foram avaliados atraves do indice de rand corrigido. Em seguida, foram construidos os intervalos de confianca para comparar os desempenhos dos algoritmos de agrupamento e das medidas de dissimilaridade |