Arquitetura híbrida para otimização multi-objetivo de SVMs

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Miranda, Péricles Barbosa Cunha de
Orientador(a): Prudêncio, Ricardo Bastos Cavalcante
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/12415
Resumo: Vem sendo dada grande atenção às Máquinas de Vetores de Suporte (SVMs) devido à sua fundamentação teórica e seu bom desempenho quando comparadas a outros algoritmos de aprendizado em diferentes aplicações. Porém, seu bom desempenho depende fortemente da escolha adequada de seus parâmetros de controle. Como a abordagem de tentativa e erro se torna impraticável devido às combinações entre os possíveis valores dos parâmetros, a seleção de parâmetros passou a ser tratada como um problema de otimização, de modo que o objetivo é encontrar a combinação de valores dos parâmetros mais adequada para um determinado problema. Embora a utilização de algoritmos de otimização e busca automatizem a seleção de parâmetros de SVM, ela pode se tornar inviável caso o número de parâmetros a serem selecionados aumente consideravelmente. Uma alternativa é o uso de Meta-Aprendizado (MA), que trata a tarefa de seleção de parâmetros como uma tarefa de aprendizado supervisionado. Cada exemplo de treinamento para o MA (meta-exemplo) armazena características de problemas passados e o desempenho obtido pelas configurações de parâmetros candidatas. Este conjunto de meta-exemplos forma a meta-base, sendo esta utilizada para auxiliar no módulo de sugestão ou meta-aprendiz. O meta-aprendiz tem a função de prever as configurações de parâmetros mais adequadas para um problema novo baseado em suas características. Deste modo, MA se torna uma alternativa menos custosa comparada aos algoritmos de otimização, pois faz uso de execuções passadas no processo de sugestão. Neste trabalho, as sugestões do meta-aprendiz são utilizadas como soluções iniciais da técnica de busca, sendo esta responsável pelo refinamento das soluções sugeridas. Neste trabalho, foi criada uma arquitetura híbrida multi-objetivo, que combina MA com algoritmos de otimização, inspirados em enxames de partículas, com múltiplos objetivos aplicado ao problema de seleção de parâmetros de SVMs. Os algoritmos de otimização utilizados no experimento foram: MOPSO, MOPSO-CDR, MOPSO-CDRS, CSS-MOPSO, m-DNPSO e MOPSO-CDLS, e os objetivos levados em consideração foram: maximização da taxa de acerto na classificação e minimização do número de vetores de suporte. De acordo com os resultados alcançados, ficou comprovado o potencial do MA na sugestão de soluções para os algoritmos de otimização. O início da busca em regiões promissoras favoreceu a convergência e geração de soluções ainda melhores, quando comparada a aplicação de algoritmos de busca tradicionais. Os Pareto fronts gerados foram analisado em 4 perspectivas (spacing, max. spread, hypervolume e coverage), sendo os resultados da abordagem híbrida superiores aos das técnicas de otimização tradicionais.