Análise exploratória e regressão espacial para dados simbólicos intervalares

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: FREITAS, Wanessa Weridiana da Luz
Orientador(a): SOUZA, Renata Maria Cardoso Rodrigues de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Programa de Pos Graduacao em Ciencia da Computacao
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/48976
Resumo: A Análise de Dados Espaciais é uma área que busca identificar padrões existentes em uma determinada região através de diversas metodologias, como índices e testes de autocorrelação espacial. A compreensão da dependência espacial de um fenômeno em uma dada região pode ser mensurada através de abordagens envolvendo a noção de autocorrelação espacial. Essas técnicas são usualmente empregadas no contexto de variáveis clássicas (pontuais). Por outro lado, a Análise de Dados Simbólicos é uma área de pesquisa e aplicação relacionada às áreas de aprendizagem de máquina e estatística, que fornecem ferramentas para descrever unidades (objetos), permitindo lidar com diversos tipos de variáveis, inclusive variáveis do tipo intervalar. Uma questão relevante consiste em tentar obter uma descrição da autocorrelação espacial para variáveis do tipo intervalar. Assim, neste trabalho buscamos conciliar a análise de dados simbólicos (variáveis intervalares) com a análise de dados espaciais. Mais especificamente, o presente estudo tem o intuito de identificar o comportamento de informações georreferenciadas para dados intervalares na Análise de Dados Simbólicos. Os objetivos principais são: i) estender o índice de autocorrelação espacial de Moran da Análise Exploratória Espacial para o caso de dados intervalares e ii) modelar dados utilizando diferentes modelos de regressão. Para analisarmos os índices de autocorrelação espacial intervalar propostos, realizamos experimentos com conjuntos de dados sintéticos do tipo intervalar. Além disso, analisamos duas aplicações para dados reais. A primeira utiliza dados de notificações de casos de COVID-19 para o nordeste brasileiro e a segunda está relacionada ao preço de aluguel de imóveis na cidade de Munique. No contexto de regressão, utilizamos o modelo de regressão linear para dados do tipo intervalar e um modelo de regressão espacial, que leva em consideração a conectividade existente entre as regiões. Para avaliarmos o desempenho dessas abordagens, realizamos simulações de Monte Carlo em que calculamos a média e o desvio padrão da magnitude média relativa do erro da estimativa dos modelos analisados. Além disso, avaliamos o desempenho dos modelos de regressão em conjuntos de dados reais.