Modelo probit com erro de classificação e erro de medida do tipo Berkson normal assimétrico

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: LIMA, Larissa dos Santos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso embargado
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Estatistica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/38517
Resumo: Nesta dissertação, foi estudado o modelo de regressão binária com erro de classificação, que está associado à variável resposta; e erro de medida. O problema de erro de medida está associado à variável independente, que é muitas vezes custoso ou impossível de mensurar. Por isso, faz-se necessário considerar uma variável substituta. Em modelos lineares, é frequentemente assumido que as observações seguem uma distribuição normal, porém nem sempre essa suposição é válida. Portanto, neste trabalho propomos um modelo de regressão binária sujeito a erro de classificação e erro de medida do tipo Berkson na variável preditora, e o erro de medida segue distribuição normal assimétrica. Tal distribuição foi introduzida por AZZALINI (1985) e é importante para modelar a assimetria da distribuição dos dados. Assim, os efeitos dos erros de medida e dos erros de classificação são investigados através de um estudo de simulação de Monte Carlo. Finalmente, foi apresentado e explorado uma aplicação em dados reais.