Detalhes bibliográficos
Ano de defesa: |
2006 |
Autor(a) principal: |
Trentin Nava, Daniela |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/6359
|
Resumo: |
Estudamos uma propriedade similar a ergodicidade para uma classe de processos aleatórios com interação local, espaço contínuo e tempo discreto. Nosso processo é uma seqüência de subconjuntos aleatórios Ut da reta real em que t = 0, 1, 2, 3, ... é chamado tempo. Estes conjuntos são de tipo especial: suas intersecções com qualquer pedaço limitado da reta real são combinações lineares de uma lista finita de medidas, cada uma concentrada em um conjunto que consiste de vários segmentos fechados cujas intersecções são vazias, os quais chamamos de blocos. Estes conjuntos são gerados indutivamente. Inicialmente, quando t = 0, temos que o conjunto U0 é vazio. A cada passo de tempo três operadores são aplicados em Ut para obter Ut+1. O primeiro operador, W α, inclui no conjunto segmentos [i, i + 1] onde i ∈ Z, de maneira aleatória: cada segmento é incluído com probabilidade independentemente dos outros. O segundo operador, WD, inclui em nosso conjunto todas as brechas com distâncias pequenas entre cada dois blocos. A ação do terceiro operador, Wpas, depende das variáveis aleatórias discretas L e R, cada tomando somente um conjunto finito de valores. Cada aplicação de Wpas faz com que o limite esquerdo de cada bloco realize um passo de passeio aleatório distribuído como a variável L independentemente de cada outro. O mesmo ocorre com o limite direito de cada bloco, mas com a variável R ao invés de L. Dizemos que nosso processo enche a reta se para algum segmento limitado, a probabilidade que Ut inclua este segmento tende para um quando o tempo tende para infinito. (Isto é análogo a ergodicidade.) Mostramos que nosso processo tem dois tipos de comportamento: Se E(L) < E(R) (em que E(.) significa esperança matemática), nosso processo enche a reta para qualquer α > 0. Se E(L) > E(R), nosso processo não enche a reta se _ for pequeno o bastante. Este contraste já havia sido mostrado considerando o espaço discreto, agora nós o generalizamos para o espaço contínuo. Nossa aproximação serve de base para a teoria de processos com interação local em um espaço contínuo, que ainda é pouco desenvolvida |