Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
NEVES, Flávio da Silva |
Orientador(a): |
GARCIA, Vinicius Cardoso |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Ciencia da Computacao
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/53688
|
Resumo: |
A Internet das Coisas (IoT) prevê um mundo onde os dispositivos do dia a dia estão conectados à internet, interagindo entre si e com o ambiente ao seu redor. Os dados coletados pelos dispositivos IoT são processados para fornecer serviços aos seus usuários. Existem inúmeros dispositivos espalhados por vários locais, tais como casas inteligentes, carros, locais públicos, bem como dispositivos que as pessoas usam em seu corpo, sem saber das suas reais capacidades, como, por exemplo, smartwatchs. Esses dispositivos coletam os mais variados tipos de dados dos seus usuários e a exposição desses dados pode colocar a privacidade de seus usuários em risco. Diante disso, o objetivo desta pesquisa é desenvolver o Smart Anonymity, que é uma solução que recomenda o algoritmo de anonimização de dados mais adequado para um conjunto de dados de acordo com suas características. As principais contribuições desta pesquisa são: (i) desenvolvimento do Smart Anonymity ; (ii) criação dos critérios para escolha de algoritmos de anonimização baseado nas características dos dados; (iii) duas ontologias para dar suporte à classificação dos dados; (iv) o uso de Machine Learning para melhorar os resultados da classificação realizada pelas ontologias. Com base nos resultados das avaliações realizadas no decorrer desta tese, é possível concluir que o Smart Anonymity alcançou resultados promissores para a classificação e recomendação dos algoritmos de anonimização para dados gerados por dispositivos IoT. Também é possível concluir que o uso de Machine Learning traz melhorias nos resultados do processo de classificação dos dados gerados por dispositivos da IoT. |