Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Silva, Edeilson Milhomem da |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/12251
|
Resumo: |
O volume de informação disponível na web aumenta a cada dia, muitas vezes por estímulo das plataformas sociais que vêm se destacando neste cenário, já que provêem facilidades para que as pessoas possam interagir e trocar experiências. A gestão eficiente deste conhecimento, embora não seja uma tarefa trivial, pode trazer diversos benefícios como, por exemplo, a recomendação personalizada para as pessoas, de acordo com as suas preferências. Neste sentido, a presente tese tem como propósito apresentar uma abordagem, intitulada SWEETS, que identifica auto-maticamente quais as áreas e nível (grau) de conhecimento das pessoas, isto é, os especialistas em determinadas áreas de conhecimento. Para isso, são usados os conhecimentos produzidos por estas pessoas e disponibilizados em diferentes plataformas virtuais. A identificação dos ní-veis de conhecimento destas pessoas em áreas específicas pode não ser suficiente, pois é inte-ressante que sejam identificados os especialistas mais adequados para uma determinada pessoa, isto é, que tenham um relacionamento social mais próximo, aumentando assim a probabilidade de colaboração. As informações contextuais dos relacionamentos (e.g. distância social) entre pessoas oferecem background para a descoberta de quão estas pessoas confiam umas nas outras. Assim, a presente tese defende que estes relacionamentos de confiança são fundamentais na decisão de colaboração entre indivíduos. Por isso, é apresentada uma abordagem, intitulada T-SWEETS, que se baseia nas informações contextuais dos relacionamentos entre indivíduos para inferir o grau de confiança entre eles, e a sua implantação em um cenário que comprovou a ten-dência de colaboração entre os indivíduos que possuem relações confiáveis. T-SWEETS baseia-se em 4 elementos: Similaridade entre Perfis, Relacionamento de Confiança, Nível de Maturi-dade e Reputação, que são oriundos do resultado de um experimento realizado com um grupo de pessoas. Outra constatação desta tese é que, embora haja um grande volume de conhecimento disponibilizado pelas pessoas nas plataformas virtuais, muitas vezes este conhecimento pode não ser suficiente para identificar e recomendar a pessoa especialista em assuntos específicos. Por isso, a descoberta (recomendação) de relacionamentos de confiança entre os indivíduos po-de ser um elemento que encoraje as pessoas a trocarem experiências ou interagirem, uma vez que as pessoas tendem a colaborar com pessoas que mais confiam, fornecendo assim, insumo para a inferência das especialidades dos indivíduos. |