Método de potencial para a classificação superviosionada

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Regina Ribeiro Lemos, Silvia
Orientador(a): Stosic, Borko
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/6060
Resumo: A classificação supervisionada representa uma parte das técnicas empregadas no contexto de Data Mining, com crescente impacto nos estudos em várias áreas do conhecimento, possibilitado pelo crescimento exponencial da capacidade de processamento e disponibilidade de recursos computacionais. Além do fato que já existem várias técnicas bem conhecidas e estabelecidas na literatura, a importância desta área exige esforços contínuos no sentido da comparação de performance de diferentes métodos, e da sua aplicabilidade aos diferentes tipos de dados, bem como propostas de novas metodologias que poderão contribuir para o estado da arte atual. Esta dissertação apresenta um novo método de classificação, o método de potencial. Este método é construído com base em conceitos da física, através do mapeamento de observações no espaço p-dimensional dos dados para o sistema virtual de partículas interagentes no espaço Euclidiano p-dimensional. O método é formalizado com todos os detalhes necessários para a definição da regra de classificação com base na teoria de decisão de Bayes. As características mais relevantes do método também são apresentadas. O método de núcleo é utilizado para comparação com o método de potencial por apresentar boas propriedades e ser bastante difundido e estudado no meio acadêmico. Os dois métodos se diferenciam basicamente pela forma funcional com que estimam as densidades que são utilizadas para se construir a regra de classificação. Os classificadores propostos pelos métodos são então avaliados com respeito a discriminabilidade da regra de decisão para dados reais e simulados, respectivamente, através das técnicas bootstrap e holdout. O estudo atual, além de ser longe de ser completo, mostra que o desempenho dos métodos é semelhante na maioria dos casos, mas que por outro lado existem situações quando cada um deles tem vantagens em relação ao outro