Continuidade absoluta de medidas ergódicas para transformações expansoras e atratores solenoidais gordos
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Matematica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpe.br/handle/123456789/34294 |
Resumo: | Neste trabalho, nós estudamos a existência de medidas invariantes absolutamente contínuas para transformações expansoras e atratores solenoidais gordos. Antes disso, estudamos conceitos fundamentais de Teoria Ergódica, como o Teorema ergódico de Birkhoff, ergodicidade e sistemas misturadores. Em seguida, abordaremos a existência de medidas invariantes para uma transformação contínua em um espaço métrico compacto. O objetivo ser a analisar as propriedades agregadas a esses aspectos em relação às medidas invariantes e ergódicas, para então estabelecemos um critério de continuidade absoluta para a medida de Lebesgue e demonstramos que toda transformação expansora, numa variedade compacta, cujo Jacobiano é Hölder, admite uma única medida invariante absolutamente contínua, a qual é ergódica e é medida física. Após isso, fornecemos uma condição geométrica de transversalidade para atratores solenoidais gordos, que é sufi ciente para garantir a continuidade absoluta da medida SRB do atrator. E, por fim, exibiremos dois exemplos: o primeiro exemplo corresponde a atratores para os quais não há medida invariante absolutamente contínua com respeito à medida de Lebesgue, o segundo exemplo corresponde a atratores para os quais a medida SRB é absolutamente contínua à medida de Lebesgue. |