Desenvolvimento de técnica de predição de defeitos em máquinas rotativas por meio de redes neurais artificiais

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: MELO, Jônata Ferreira de
Orientador(a): BARBOSA, José Maria Andrade
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Programa de Pos Graduacao em Engenharia Mecanica
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/32494
Resumo: Com o desenvolvimento da tecnologia de fabricação e processos com a chegada da indústria 4.0, toda uma série de conceitos precisam ser revistos e avaliados. A manufatura moderna traz paradigmas que impactam diretamente em setores como manutenção. Na direção do esforço de livrar o homem de atividades rotineiras e melhoria na eficiência e segurança na execução de atividades de manutenção preditiva, este trabalho se propõe a desenvolver uma técnica capaz de automatizar o diagnóstico de falhas como desbalanceamento e desalinhamento em máquinas rotativas, por meio da aplicação de redes neurais artificiais do tipo feedforward multicamadas. Os dados utilizados para o treinamento da rede foram dados de vibração obtidos experimentalmente e o padrão dos problemas em estudos foram capturados por meio da decomposição dos sinais mediante aplicação da transformada wavelet. Os resultados obtidos constataram que a rede foi capaz de apreender as características dos problemas analisados e fornecer resultados acima dos 99% de acerto em algumas condições de operação, além de diagnosticar inclusive quando os problemas estão combinados. O algoritmo desenvolvido além de ser aplicável a supervisão de máquinas rotativas em tempo real é capaz também de fornecer análises FFT, STFT, Espectogramas, análises wavelet no domínio tempo x frequência e decomposição de sinais.