Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
MELO, Jônata Ferreira de |
Orientador(a): |
BARBOSA, José Maria Andrade |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Engenharia Mecanica
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/32494
|
Resumo: |
Com o desenvolvimento da tecnologia de fabricação e processos com a chegada da indústria 4.0, toda uma série de conceitos precisam ser revistos e avaliados. A manufatura moderna traz paradigmas que impactam diretamente em setores como manutenção. Na direção do esforço de livrar o homem de atividades rotineiras e melhoria na eficiência e segurança na execução de atividades de manutenção preditiva, este trabalho se propõe a desenvolver uma técnica capaz de automatizar o diagnóstico de falhas como desbalanceamento e desalinhamento em máquinas rotativas, por meio da aplicação de redes neurais artificiais do tipo feedforward multicamadas. Os dados utilizados para o treinamento da rede foram dados de vibração obtidos experimentalmente e o padrão dos problemas em estudos foram capturados por meio da decomposição dos sinais mediante aplicação da transformada wavelet. Os resultados obtidos constataram que a rede foi capaz de apreender as características dos problemas analisados e fornecer resultados acima dos 99% de acerto em algumas condições de operação, além de diagnosticar inclusive quando os problemas estão combinados. O algoritmo desenvolvido além de ser aplicável a supervisão de máquinas rotativas em tempo real é capaz também de fornecer análises FFT, STFT, Espectogramas, análises wavelet no domínio tempo x frequência e decomposição de sinais. |