Hankel and sub-Hankel determinants ( a detailed study of their polar ideals)

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Maral, Mostafazadehfard
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/12195
Resumo: Os resultados desta tese se enquadram na teoria dos polin^omios homaloidais, com ^enfase no caso de determinantes. O objetivo principal e o estudo das propriedades homol ogicas do determinante da matriz gen erica de Hankel e de uma de suas degenera c~oes, como um m etodo de abordar o seu comportamento de natureza homal oide. No caso da matriz de Hankel gen erica, em caracter stica zero, concluimos que o Hessiano do determinante e n~ao nulo (equivalentemente, o mapa polar associado e dominante), mas o determinante n~ao e homal oide. No caso degenerado, sabese que o determinante e homal oide (provado por Cilibert-Russo-Simis [3]); aqui, determinamos os invariantes num ericos e homol ogicos do respectivo ideal gradiente (polar), esses podendo ser usados para simpli car algumas passagens no argumento de [3]. Os principais resultados da tese s~ao baseados em ferramentas n~ao triviais da algebra comutativa e a natureza do uso dessas ferramentas e um dos recursos importantes desta tese.