Diagnóstico em modelos de regressão gama unitária
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Estatistica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpe.br/handle/123456789/37778 |
Resumo: | Nesta tese tratamos da questão de diagnóstico e qualidade de ajuste do modelo de regressão gama unitária. O modelo de regressão gama unitária foi proposto por (MOUSA; EL-SHEIKH; ABDEL-FATTAH, 2016) com o objetivo de modelar variáveis continuas duplamente limitadas, considerando simultaneamente a modelagem da média e da precisão. Objetivando desenvolver ferramentas de diagnostico obtemos as expressões dos resíduos ponderado, ponderado padronizado ((ESPINHEIRA; FERRARI; CRIBARI-NETO, 2008)) e combinado ((ESPINHEIRA; SANTOS; CRIBARI-NETO, 2017)) para o modelo de regressão gama unitária. Em seguida consideramos quatro métodos de perturbação, a saber: ponderação de casos, perturbação da variável resposta, perturbação individual de covariadas e perturbação conjunta de covariadas, a partir daí, obtivemos as quantidades associadas ao método de diagnóstico via influência local ((COOK, 1986)). Além disso, consideramos o problema de investigar a qualidade do modelo tanto do ponto de vista de predição quanto do ponto de vista de variabilidade. Neste sentido desenvolvemos para o modelo de regressão gama unitária as expressões das estatísticas PRESS e P² ((ESPINHEIRA; OLIVEIRA SILVA, 2019)) e investigamos o comportamento destas medidas conjuntamente com versões do coeficiente de determinação R². Por fim, realizamos simulações de Monte Carlo e aplicações à dados reais embasam as conclusões a serem apresentadas. |