Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Rodrigues da Silva Júnior, Elias |
Orientador(a): |
Darmiton da Cunha Cavalcanti, George |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/2390
|
Resumo: |
Multimodalidade intraclasse é frequente em problemas de classificação e eles conduzem a indesejadas projeções quando aplicados à técnicas lineares de extração de características. As clássicas técnicas lineares de extração de características, que constroem suas soluções baseadas em métricas globais do conjunto de padrões, não podem perceber a multimodalidade dentro da classe, logo, elas criam projeções que não preservam a estrutura multimodal após a redução da dimensionalidade, o que pode ser uma pobre ou indesejada representação da distribuição original dos padrões. Na literatura são encontradas técnicas lineares de extração de características que se preocupam com a manutenção da estrutura multimodal da distribuição dos padrões após a redução da dimensionalidade. Todavia, essas técnicas calculam sua solução tomando a influência de cada classe na percepção da multimodalidade em conjunto, o que pode acarretar em influência negativa de uma classe sobre outra no que diz respeito à preservação da estrutura multimodal do conjunto de padrões após a redução da dimensionalidade. Para melhor tratar problemas com multimodalidade intraclasse, são apresentadas neste trabalho novas técnicas lineares de extração de características, as quais avaliam cada classe separadamente e constróem uma solução específica para cada uma delas. A solução encontrada para cada classe se preocupa com a estrutura local da vizinhança de seus padrões e busca preservar esta estrutura após a redução da dimensionalidade. Deste modo, um padrão novidade (ou de teste) é avaliado não apenas em relação a uma única solução, como acontece com as clássicas técnicas lineares de extração de caracter ísticas, que deve discernir quanto à pertinência desse padrão a uma das várias classes do problema, mas passa a ser avaliado segundo as soluções obtidas para cada classe, e é classificado segundo aquela que melhor se ajustar às características do padrão. Os experimentos realizados aqui mostram que essa abordagem é adequada ao tratamento de multimodalidade intraclasse, obtendo desempenho superior ou igual ao das demais técnicas lineares de extração de características que também tratam multimodalidade |