Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
ALVES, Evanilson Landim |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/12615
|
Resumo: |
Afirmar que menos com menos é mais não é uma ação trivial, tampouco uma verdade que se sustenta em todas as situações. A princípio isso já indica que aprender e ensinar conceitos relativos à multiplicação e divisão de números inteiros na Educação Básica tem sido uma tarefa hercúlea para àqueles que precisam desenvolvê-la. A marcha desse processo, na maioria das vezes, tem sido marcada por intempéries e frustrações constituídas e constitutivas de resistências como a ausência de situações que dão sentido à multiplicação e a divisão de números inteiros relativos, as formas de representação dessas operações e a falta de relação significativa entre as atividades forjadas pela escola e as características de quem deveria aprender. É diante de tantas questões que esta pesquisa nasce com vistas a entender as dificuldades e resistências de adolescentes, jovens e adultos escolarizados na compreensão dos conceitos relativos à multiplicação e a divisão de números inteiros, dado que apesar de a literatura já indicar estudos sobre a aprendizagem dos números inteiros, realizadas com as operações adição e subtração, ainda não se têm registros de experimentos realizados com as operações multiplicação e divisão em z. Soma-se a isso a nossa curiosidade como professor da Educação de Jovens e Adultos e do Ensino Fundamental dito regular sobre a origem das competências e estratégias empregadas por esses estudantes na resolução de situações, que requerem tais operações. Assim, o nosso objeto de estudo resulta da união de todas essas demandas e faz-nos partir da seguinte questão: Quais as principais competências e dificuldades evidenciadas por adultos e adolescentes escolarizados em relação à multiplicação e divisão de números inteiros e que aspectos específicos (modalidade de ensino, idade, atividade profissional) podem influenciar a compreensão e as estratégias mobilizadas pelos estudantes? A pesquisa foi realizada por meio de entrevistas clínicas aplicadas a 32 estudantes já escolarizados na multiplicação e divisão de números inteiros. Os participantes foram distribuídos em quatro grupos, a saber: jovens na 4ª fase da EJA, adultos na 4ª fase da EJA, adolescentes no 8º ano do Ensino Fundamental e adultos no 8º ano do Ensino Fundamental. Essa organização deu-se em função da necessidade de criarmos algumas condições de controle sobre as variáveis modalidade de ensino e idade, já que as possíveis especificidades apontadas nas formas de agir dos estudantes da 4ª fase e do 8º ano poderiam ter origem na modalidade de ensino ou na idade dos mesmos, além de outras como a atividade profissional que eles desenvolvem, o que também consideramos, embora de modo mais distante. Para o instrumento de coleta de dados, necessitávamos de um suporte rigoroso capaz de auxiliar o desenvolvimento e a análise das questões, dando luz ao fenômeno que queríamos investigar. Por isso, elaboramos 26 itens, assentados em sete questões baseadas na Teoria dos Campos Conceituais. Os resultados trouxeram à tona que tanto os estudantes da EJA quanto os do 8º ano ainda apresentam dificuldades na resolução de situações que envolvem a multiplicação e a divisão de números inteiros relativos, embora as suas ações indiquem que eles estão a caminho da compreensão desses conceitos. Na comparação do desempenho dos grupos, não foram identificadas diferenças importantes, mas, quando em situação, adolescentes e adultos mobilizaram estratégias com diferenças expressivas. Enquanto os adultos com frequência fogem dos algoritmos da multiplicação e divisão, os mais novos se agarram a essas formas de resolução. |