Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
ROCHA, José Antônio Manso Raimundo da |
Orientador(a): |
TIMES, Valéria Cesário |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/2287
|
Resumo: |
O Sistema GPS permite que objetos móveis possuam a funcionalidade de obter sua posição espaço-temporal a todo instante. Esta funcionalidade, recentemente requerida pelos mais diversos tipos de aplicações computacionais, tem gerado uma enorme quantidade de dados espaciais brutos sobre trajetórias, criando grandes bancos de dados espaço-temporais. Estão em curso projetos e pesquisas direcionados para o gerenciamento deste novo tipo de dados, e para a implementação de técnicas de análises apropriadas para a extração de conhecimento sobre trajetórias. Este trabalho propõe um novo método para se adicionar semântica às trajetórias, fundamentando-se na variação temporal da direção do objeto móvel, com a finalidade de gerar agrupamentos que representem locais de interesse no contexto da atividade na qual o objeto móvel se encontra inserido. Com a finalidade de validar o método proposto, trajetórias reais de barcos pesqueiros de atuns, obtidas pelo Programa Nacional de Rastreamento de Embarcações Pesqueiras por Satélite (PREPS), foram processadas pela extensão espacial do software Weka, o qual foi estendido para incorporar as funcionalidades principais do nosso método proposto, denominado de DB-SMoT (Stops and Moves de Trajetórias Baseado na Direção). Os resultados experimentais foram avaliados por meio da análise ROC (Receiver Operating Characteristic). No espaço ROC o método DB-SMoT foi comparado com outro método existente, chamado CB-SMoT (Clustering-Based Stops and Moves of Trajectories), que se baseia na variação da velocidade do objeto móvel para incorporação de semântica às trajetórias. Em experimentos com três trajetórias, o método proposto teve um desempenho superior ao CB-SMoT com relação à identificação de áreas de interesse em trajetórias |