DB-SMoT: um método baseado na direção para identificação de áreas de interesse em trajetórias

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: ROCHA, José Antônio Manso Raimundo da
Orientador(a): TIMES, Valéria Cesário
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
GPS
Link de acesso: https://repositorio.ufpe.br/handle/123456789/2287
Resumo: O Sistema GPS permite que objetos móveis possuam a funcionalidade de obter sua posição espaço-temporal a todo instante. Esta funcionalidade, recentemente requerida pelos mais diversos tipos de aplicações computacionais, tem gerado uma enorme quantidade de dados espaciais brutos sobre trajetórias, criando grandes bancos de dados espaço-temporais. Estão em curso projetos e pesquisas direcionados para o gerenciamento deste novo tipo de dados, e para a implementação de técnicas de análises apropriadas para a extração de conhecimento sobre trajetórias. Este trabalho propõe um novo método para se adicionar semântica às trajetórias, fundamentando-se na variação temporal da direção do objeto móvel, com a finalidade de gerar agrupamentos que representem locais de interesse no contexto da atividade na qual o objeto móvel se encontra inserido. Com a finalidade de validar o método proposto, trajetórias reais de barcos pesqueiros de atuns, obtidas pelo Programa Nacional de Rastreamento de Embarcações Pesqueiras por Satélite (PREPS), foram processadas pela extensão espacial do software Weka, o qual foi estendido para incorporar as funcionalidades principais do nosso método proposto, denominado de DB-SMoT (Stops and Moves de Trajetórias Baseado na Direção). Os resultados experimentais foram avaliados por meio da análise ROC (Receiver Operating Characteristic). No espaço ROC o método DB-SMoT foi comparado com outro método existente, chamado CB-SMoT (Clustering-Based Stops and Moves of Trajectories), que se baseia na variação da velocidade do objeto móvel para incorporação de semântica às trajetórias. Em experimentos com três trajetórias, o método proposto teve um desempenho superior ao CB-SMoT com relação à identificação de áreas de interesse em trajetórias