Uma abordagem adaptativa de learning vector quantization para classificação de dados intervalares

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Silva Filho, Telmo de Menezes e
Orientador(a): Souza, Renata Maria Cardoso Rodrigues de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/11453
Resumo: A Análise de Dados Simbólicos lida com tipos de dados complexos, capazes de modelar a variabilidade interna dos dados e dados imprecisos. Dados simbólicos intervalares surgem naturalmente de valores como variação de temperatura diária, pressão sanguínea, entre outros. Esta dissertação introduz um algoritmo de Learning Vector Quantization para dados simbólicos intervalares, que usa uma distância Euclidiana intervalar ponderada e generalizada para medir a distância entre instâncias de dados e protótipos. A distância proposta tem quatro casos especiais. O primeiro caso é a distância Euclidiana intervalar e tende a modelar classes e clusters com formas esféricas. O segundo caso é uma distância intervalar baseada em protótipos que modela subregiões não-esféricas e de tamanhos similares dentro das classes. O terceiro caso permite à distância lidar com subregiões não-esféricas e de tamanhos variados dentro das classes. O último caso permite à distância modelar classes desbalanceadas, compostas de subregiões de várias formas e tamanhos. Experimentos são feitos para avaliar os desempenhos do Learning Vector Quantization intervalar proposto, usando todos os quatro casos da distância proposta. Três conjuntos de dados intervalares sintéticos e um conjunto de dados intervalares reais são usados nesses experimentos e seus resultados mostram a utilidade de uma distância localmente ponderada.