Modelos não lineares de efeitos mistos para dados censurados com erros elípticos autorregressivos
Ano de defesa: | 2023 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso embargado |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Estatistica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpe.br/handle/123456789/54678 |
Resumo: | Os modelos de efeitos mistos são ferramentas frequentemente utilizadas para o estudo de dados longitudinais. No entanto, devido à possível complexidade deste tipo de dados, torna-se atrativo o desenvolvimento de extensões destes modelos com suposições mais flexíveis com a finalidade de melhorar o ajuste dos dados. Neste contexto, propomos uma extensão mais flexível dos modelos de efeitos mistos com respostas censuradas e erros normais autorregressivos de ordem p. Para isso, atribuímos inicialmente a classe de distribuição elíptica às componentes aleatórias do modelo. Esta família de distribuições nos permitirá trabalhar com conjuntos de dados com caudas mais leves ou mais pesadas que a normal, possibilitando uma melhor acomodação de observações extremas e uma menor sensibilidade à presença de observações atípicas. Dessa forma, um algoritmo do tipo EM foi desenvolvido para obter as estimativas de máxima verossimilhança e os erros padrão dessas estimativas utilizando a matriz de informação empírica. Por outro lado, nos últimos anos, há um interesse crescente em métodos estatísticos para a análise de dados longitudinais com efeitos espaciais. Nesse contexto, propomos uma segunda extensão do modelo proposto inicialmente, incluindo dependência espacial na distribuição do efeito aleatóreo. Para avaliar a qualidade do ajuste e as premissas dos modelos propostos foram utilizados os resíduos martingais e medidas de diagnóstico com base na abordagem de influência global e local. Apresentamos estudos de simulação sob diferentes cenários para avaliar as propriedades assintóticas dos estimadores e o desempenho dessa classe de modelos na presença de observações atípicas. Finalmente, foram analisados exemplos práticos com dados reais. |