Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
FREITAS, Marcelo Bassani de |
Orientador(a): |
CAVALCANTI, George Darmiton da Cunha |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Ciencia da Computacao
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/16361
|
Resumo: |
Nos Ambientes Inteligentes, os dispositivos colaboram entre si para auxiliar o usuário de forma não intrusiva. Uma forma de auxílio é antecipar as ações do usuário e realizá-las por ele ou facilitar a sua realização. Esse trabalho propõe um framework para a predição das ações do usuário pelo aprendizado do seu comportamento e hábitos enquanto ele interage com o Ambiente Inteligente. As ações do usuário é considerada como sendo a troca do valor de um transdutor (sensor ou atuador). A interação do usuário com o Ambiente Inteligente produz o contexto que é utilizado para a predição das ações. O preditor é um algoritmo de classificação supervisionada que aprende os padrões de comportamento do habitante do Ambiente Inteligente. Portanto, a solução proposta pode prover um serviço personalizado e adaptativo ao invés de um conjunto de regras predefinido por humanos. O preditor trabalha apenas com um transdutor alvo e para prever valores de mais transdutores, mais preditores devem ser treinados. A solução proposta é projetada para funcionar automaticamente sem a necessidade de interferência humana. Isso faz com que o habitante do Ambiente Inteligente sinta-se mais confortável já que sua privacidade estará protegida. Todas as informações para treinar o preditor podem ser obtidas diretamente dos transdutores do Ambiente Inteligente. Não existe a necessidade de anotação manual dos dados e nem dados extras como tipo do transdutor, localização do transdutor ou objeto ao qual o transdutor está acoplado. Isso aumenta a facilidade de instalação dos transdutores no Ambiente Inteligente. A saída do preditor pode tanto controlar diretamente um atuador ou ser enviada a um agente de software. Esse agente pode verificar condições de segurança ou requisitos de gerenciamento de energia antes de tomar a decisão. O foco desse trabalho é a geração de uma base de dados com os dados do contexto para o treinamento do preditor responsável por decidir se o transdutor alvo deverá ou não mudar seu valor. Vários parâmetros são considerados como o tamanho do período de treinamento, quantidade de ativações passadas que serão consideradas e quais são os transdutores mais relevantes para a predição. A solução proposta atinge uma melhora significativa para todos os transdutores estudados e a maioria das combinações de parâmetros da geração da base de dados possuem resultados melhores que o caso base. Além disso, os nossos resultados são superiores às outras soluções da literatura. |