Desenvolvimento de sondas multimodais baseadas em pontos quânticos para aplicações biomédicas

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: CABRAL FILHO, Paulo Euzébio
Orientador(a): FONTES, Adriana
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Programa de Pos Graduacao em Ciencias Biologicas
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/18443
Resumo: Os pontos quânticos ou quantum dots (QDs) são nanocristais fluorescentes de semicondutores com propriedades ópticas únicas, tendo como principais vantagens: (1) alta resistência à fotodegradação, possibilitando o acompanhamento de eventos biológicos em tempo real e, (2) superfície ativa, permitindo a conjugação a biomoléculas que vão propiciar especificidade às marcações, além de possibilitar também sua ligação a outras nanopartículas. Com isso, é possível quantificar uma variedade de biomoléculas em células e tecidos e desenvolver nanossondas bimodais (magnético-fluorescentes) baseadas em QDs. O desenvolvimento de nanopartículas bimodais pode aliar as vantagens das técnicas baseadas em fluorescência com as de imagem por ressonância magnética (IRM). Entretanto, a obtenção de sondas bimodais é ainda um desafio, pois durante a conjugação devem ser mantidas as propriedades fluorescentes e magnéticas das nanopartículas, e com isso ainda há poucos trabalhos que façam aplicações em sistemas biológicos. O objetivo desta tese se caracteriza pelo desenvolvimento de sondas com propriedades multimodais baseadas em QDs de Telureto de Cádmio (CdTe) associadas a nanopartículas magnéticas de óxido de ferro como marcadores sítio-específicos em células cancerígenas. Inicialmente os QDs foram conjugados covalentemente à transferrina (Tf) [QDs-Tf] para a quantificação específica de seus receptores (TfRs) em células HeLa e em duas linhagens de glioblastoma (U87 e DBTRG). Através de ensaios de saturação do TfR, foi possível inferir sobre a taxa de renovação deste receptor nessas células. Os resultados mostraram que as células HeLa e as DBTRG possuem uma maior quantidade do TfR quando comparadas às U87. As DBTRG apresentaram maior taxa de renovação do TfR, quando comparadas aos outros dois tipos, demonstrando que os conjugados QDs-Tf são potenciais ferramentas para o estudo da biologia celular do câncer. Posteriormente, nanossondas bimodais (QDsMNPs), baseadas em QDs associados a nanopartículas magnéticas de óxido de ferro, foram obtidas por conjugação covalente. De acordo com as caracterizações, QDs-MNPs mantiveram suas propriedades ópticas e magnéticas e apresentaram-se como potenciais sondas inespecíficas para fluorescência e para aquisição de imagens por RM ponderadas em T2 (tempo de relaxação nuclear transversal). A conjugação prévia dos QDs a Tf, além de fornecer informações sobre a biologia do câncer, auxiliou também na padronização da marcação específica do TfR em células cancerígenas e no estabelecimento de protocolos de conjugação das sondas bimodais a Tf. Por fim, as QDs-MNPs foram conjugadas covalentemente a Tf e essa nova sonda multimodal [(QDs-MNPs)-Tf] reconheceu especificamente os TfR em células HeLa. As caracterizações indicaram que o sistema multimodal não apresentou alteração significativa nas propriedades ópticas e exibiu uma maior relaxividade transversal (r2), se mostrando igualmente potencial sonda para análise por fluorescência e IRM ponderada em T2. Neste trabalho foram obtidas nanossondas promissoras para serem aplicadas na compreensão da biologia celular do câncer, além de auxiliar em métodos diagnósticos e terapêuticos para essa doença.