Princípio fundamental da contagem: conhecimentos de professores de matemática sobre seu uso na resolução de situações combinatórias

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: LIMA, Ana Paula Barbosa de
Orientador(a): BORBA, Rute Elizabete de Souza Rosa
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Programa de Pos Graduacao em Educacao Matematica e Tecnologica
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/18810
Resumo: No estudo propôs-se investigar os conhecimentos de professores da Educação Básica sobre como o Princípio Fundamental da Contagem (PFC), também conhecido como princípio multiplicativo, pode ser usado na resolução de variados problemas combinatórios e na construção das fórmulas da Análise Combinatória. Pesquisas anteriores evidenciam a importância deste princípio no ensino de Combinatória e como o mesmo facilita a resolução dos diferentes tipos de situações combinatórias. Foram realizados dois estudos, um com a finalidade de saber se professores e estudantes reconhecem o PFC em situações combinatórias; e o outro estudo tinha como objetivo investigar conhecimentos de professores de Matemática sobre a resolução e o ensino de problemas combinatórios com o uso do PFC. O primeiro estudo envolveu um teste de múltipla escolha e justificativas, de dados coletados junto a professores dos anos finais do Ensino Fundamental, professores do Ensino Médio e alunos deste último nível da Educação Básica. Para o segundo estudo, foi realizada uma entrevista semiestruturada com professores, baseada nos tipos de conhecimento sugeridos por Ball, Thames e Phelps (2008) (conhecimento comum do conteúdo, conhecimento especializado do conteúdo, conhecimento horizontal do conteúdo, conhecimento do conteúdo e alunos, conhecimento do conteúdo e ensino e conhecimento do conteúdo e currículo). Neste segundo estudo a coleta de dados foi realizada por meio de protocolos com situações combinatórias resolvidas por alunos. Estas situações envolveram os quatro tipos de problemas combinatórios (produto cartesiano, arranjo, permutação e combinação). A partir dos conhecimentos propostos por Ball, Thames e Phelps (2008), foram criadas seis categorias com foco no PFC para a análise dos conhecimentos dos professores sobre o uso do PFC na resolução de situações combinatórias: conhecimento comum do PFC, conhecimento especializado do PFC, conhecimento horizontal do PFC, conhecimento do PFC e alunos, conhecimento do PFC e ensino e conhecimento do PFC e currículo. Como principais resultados tem-se que, os professores do Ensino Médio melhor reconhecem o uso do PFC, quando comparados com os professores do Ensino Fundamental. O reconhecimento do PFC dos professores do Ensino Médio é muito superior ao dos alunos deste nível de ensino, o que pode indicar que os professores parecem não estar ressaltando este princípio no ensino junto a seus alunos. Os professores evidenciam conhecimentos comum e especializado do PFC, bem como horizontal, mas não indicam como relacionar o princípio multiplicativo com as fórmulas da Análise Combinatória. Evidenciam conhecimento do aluno, mas referente ao conhecimento do ensino não deixam claro como o uso de outras estratégias, tais como árvores de possibilidades e fórmulas, se relacionam com o PFC. Melhores conhecimentos do que é prescrito e apresentado em currículos também são necessários. Conclui-se que os conhecimentos docentes do PFC podem servir de base para um melhor desenvolvimento do ensino e da aprendizagem da Combinatória, mas há aspectos do conhecimento que os professores necessitam desenvolver melhor. Espera-se, assim, ter contribuído com o levantamento de conhecimentos docentes sobre a Combinatória e também ter trazido contribuições referentes ao papel do Princípio Fundamental da Contagem como eficiente estratégia de ensino, por possibilitar a resolução de diferentes tipos de problemas combinatórios.