Controle de um modelo para dengue

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: MACHADO, Larissa Santos
Orientador(a): CASTILHO, Cesar Augusto Rodrigues
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Programa de Pos Graduacao em Matematica
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/25149
Resumo: A Teoria de Controle Ótimo vem sendo aplicada a muitos problemas reais de diversas áreas. Sendo assim, neste trabalho, caracterizaremos Problemas de Controle Ótimo modelados a partir de Sitemas Dinâmicos formados por Equações Diferenciais Ordinárias e com isso provaremos o Princípio Máximo de Pontryagin que trabalha com a existência de soluções ótimas para os problemas introduzindo um conceito de Variável Adjunta. Com o intuito de obter soluções numéricas, conheceremos dois métodos de otimização (Método de Varredura Frente-Trás e Método do Gradiente) que serão aplicados de forma prática, com seus algoritmos escritos no MATLAB, em um exemplo tutorial de reação bioquímica. Após entendermos um pouco a teoria de controle, a nível epidemiológico, trabalharemos os conhecimentos obtidos em um modelo SIR (Suscetíveis-Infectados-Resistentes)aplicado à dengue e analisaremos o seu respectivo problema ótimo cujo objetivo é minimizar o número de indivíduos infectados utilizando técnicas de controle à mortalidade dos mosquitos, como campanhas de pulverização, em um cenário onde a temperatura ambiente tem em média 26◦C. Para implementar este modelo, foram utilizados o software MATLAB com o Método de Varredura.