Detalhes bibliográficos
Ano de defesa: |
2008 |
Autor(a) principal: |
LIMA, Juliano Bandeira |
Orientador(a): |
SOUZA, Ricardo Menezes Campello de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/4989
|
Resumo: |
Nesta tese, são introduzidas novas ferramentas matemáticas relacionadas à trigonometria sobre corpos finitos e propostos alguns cenários de aplicação para as mesmas. O ponto de partida para o trabalho desenvolvido é a inédita definição das transformadas trigonométricas sobre corpos finitos (FFTT), o que inclui oito transformadas do co-seno (FFCT) e oito do seno (FFST). Estabelecidas as suas principais propriedades, propõem-se duas aplicações. A primeira delas é uma marca d água digital frágil no domínio da FFCT; na segunda, demonstrase o uso da propriedade de convolução simétrica das FFTT na filtragem de imagens. Em seguida, investiga-se a auto-estrutura das FFTT. Tal estudo revela alguns aspectos acerca da capacidade de formatar distribuições de probabilidade sobre os inteiros que essas transformadas possuem e cujo emprego em Criptografia é sugerido. Ainda com base nas referidas auto-estruturas, propõe-se uma técnica para separação cega de seqüências. Para isso, toma-se como refe-rência um cenário de comunicação multiusuário, em que as informações oriundas de fontes distintas interferem de forma aditiva e são posteriormente recuperadas. Por fim, define-se a função co-seno inversa sobre corpos finitos, a qual é empregada numa nova definição para polinômios de Chebyshev em GF(p). Tal definição possibilita demonstrar a segurança de criptossistemas baseados nos polinômios mencionados. Ainda nesse contexto, introduz-se um algoritmo rápido para multiplicação de polinômios na forma de Chebyshev. Ao longo de todo o trabalho, são realizadas diversas simulações e apresentados resultados que permitem avaliar as vantagens dos métodos propostos sobre alternativas convencionais. Simultaneamente, fornecem-se diretrizes que indicam a possibilidade de desenvolver outros trabalhos em que os cenários de aplicação discutidos sejam tratados de forma mais específica |