Combinatorial and Topological Approachto the Ising Chain in a Field

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: CASIERRA, Jorge Armando Rehn
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Fisica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/20012
Resumo: Apresentamos uma solução alternativa para a cadeia de Isingna presença de campo comcondições de contorno aberta e periódica, nos ensembles microcanônico e canônico, a partirde uma perspectiva combinatória e topológica unificada. Em particular, o cálculo da entropiacomo função da energia revela um valor residual para campos críticos, um fenômeno para oqual fornecemos uma interpretação topológica e uma conexãocom a sequência de Fibonacci. Afunção de partição canônica é identificada como a função geradora combinatorial do problemamicrocanônico. Uma análise detalhada da termodinâmica comvariação do campo magnético,incluindo temperaturas positivas e negativas, revela características interessantes. Por fim, nósenfatizamos que nossa abordagem combinatória para o ensemble canônico é útil no cálculo ex-ato do valor médio da característica de Euler associada com as configurações de spin da cadeia,a qual é descontínua nos referidos campos críticos, e cujo comportamento com a temperaturaé esperado estar associado com o comportamento crítico da cadeia. De fato, nossos resultadosmostram que uma conjectura proposta também é válida para a cadeia de Ising:χ(TC) =0, ondeTC=0 é a temperatura crítica.