Qual mais fácil de resolver com 2, 3 ou 4 etapas de escolha: produto cartesiano, arranjo, combinação ou permutação?

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: VEGA, Danielle Avanço
Orientador(a): BORBA, Rute Elizabete de Souza
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/12569
Resumo: Com o objetivo de analisar a influência do número de etapas de escolha na resolução dos diversos tipos de problemas combinatórios, (produto cartesiano, arranjo, combinação e permutação), a presente pesquisa se fundamentou na Teoria dos Campos Conceituais de Vergnaud (1986), que defende a existência de três dimensões fundamentais de conceitos: situações que dão significado, invariantes e representações simbólicas. A pesquisa também se fundamentou em outros autores, entre eles, Pessoa e Borba (2009), que abordam os diversos significados presentes na Combinatória e Borba (2010), que trata do raciocínio combinatório. A presente dissertação entende por etapa de escolha, as variáveis presentes em uma situação combinatória e defende que o número de etapas de escolha pode influenciar na resolução de problemas combinatórios. Participaram da pesquisa 128 alunos do 6º ano do Ensino Fundamental os quais responderam a um teste de sondagem. Foram seis tipos de testes, os cinco primeiros compararam os desempenhos em dois tipos de problemas cada e o último teste comparou as etapas de escolha dentro do mesmo problema. Em todos os testes eram comparados problemas com duas, três e quatro etapas de escolha. No teste Tipo 6 se observaram as etapas de escolha dentro do mesmo problema. O resultado dos testes revelou que os Tipo 2 e 5 foram os que obtiveram uma média de acertos mais baixas, podendo esta dificuldade estar associada ao total de possibilidades presente nos problemas de arranjo com quatro etapas, visto que era o tipo de problema que apresentava maior grandeza numérica. Quando se comparou cada etapa de escolha, verificou-se haver diferença estatisticamente significativa entre os desempenhos nos problemas de produto cartesiano com quatro etapas de escolha em comparação aos mesmos problemas com duas e três etapas de escolha, evidenciando a influencia das etapas de escolha no desempenho dos alunos. Ao comparar o problema de produto cartesiano que, segundo pesquisas anteriores (PESSOA e BORBA, 2009, 2010; CORREIA e OLIVEIRA, 2011, e AZEVEDO e BORBA, 2012), era tido como o problema de mais fácil resolução para os alunos, com os problemas de permutação, percebeu-se uma inversão do que havia sido constatado anteriormente, na qual a permutação passou a ser mais fácil que o produto cartesiano quando se controlou o número de etapas de escolha. Quando se observou as estratégias de resolução, não se verificou relação entre a representação simbólica e estratégias utilizadas e os tipos de problemas, nem com as etapas de escolha, indicando que a utilização das estratégias pode estar relacionada a escolhas pessoais. Conclui-se que no trabalho com variados tipos de situações combinatórias é preciso considerar diferentes etapas de escolha em cada tipo de problema desde o Ensino Fundamental. Almeja-se, assim, com essa pesquisa, contribuir para a reflexão sobre aspectos a serem considerados de ensino da Combinatória.