Algoritmos de Geração de Protótipos Para Bases Desbalanceadas

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Oliveira, Dayvid Victor Rodrigues de
Orientador(a): Cavalcanti, George Darmiton da Cunha
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/11330
Resumo: Técnicas de redução de instâncias são técnicas usadas para reduzir a quantidade de instâncias em um conjunto de dados. Estas técnicas podem atuar removendo dados redundantes ou gerando novos dados. As instâncias resultantes são chamadas de protótipos. Técnicas de seleção de protótipos, são técnicas de redução de instâncias que realizam esta tarefa selecionando um subconjunto do conjunto de dados original. Já as técnicas de geração de protótipos, são técnicas de redução de instâncias que criam instâncias que não necessariamente pertencem ao conjunto de dados original. Algoritmos evolucionários têm sido frequentemente utilizados em seleção de protótipos, tal abordagem é chamada de evolutionary prototype selection. Algumas bases de dados do mundo real possuem muitas instâncias de uma classe, a classe majoritária, e poucas de outra, classe minoritária, estas bases são chamadas de bases desbalanceadas. Em tais bases, muitos algoritmos de redução de instâncias se tornam inviáveis, retornando muitas instâncias da classe majoritária e poucas, ou até nenhuma, da classe minoritária. Este efeito é ainda mais acentuado em técnicas de remoção de ruídos. Neste trabalho, são propostas duas técnicas de geração de protótipos que minimizam o efeito de desbalanceamento entre classes. A primeira proposta é o Creative Steady-State Memetic Algorithm (CSSMA), um algoritmo de geração de protótipos que utiliza um algoritmo evolucionário, incorporando uma busca local, para encontrar o conjunto de protótipos artificiais que maximiza a função de aptidão. Esta técnica é inspirada no Steady-State Memetic Algorithm, uma das melhores técnicas de seleção de protótipos na literatura, tanto em redução quanto em classificação. A segunda proposta é o Adaptive Self- Generating Prototypes (ASGP), esta técnica gera instâncias levando em consideração o tamanho do maior agrupamento de cada classe. O ASGP é uma derivação do Self-Generating Prototypes (SGP), considerada uma das técnicas de geração de protótipos de maior poder de generalização, sendo, porém, ineficiente em bases desbalanceadas. As bases de dados usadas nos experimentos são do módulo imbalanced datasets do KEEL software, dicotômicas, e com diferentes níveis de desbalanceamento. Cada base é dividida em 5 partições para aplicação do k-fold cross validation (k=5). As métricas usadas para avaliar a performance dos algoritmos foram a area under the ROC curve (AUC) e a taxa de redução. Para comparar os resultados, foi utilizado o teste estatístico de Wilcoxon. Os resultados mostram que o CSSMA foi superior em taxa de acerto, AUC, a outros algoritmos evolucionários de redução de instâncias recentemente propostos. O ASGP também obteve uma AUC superior ao Self-Generating Prototypes 2, versão mais atual do SGP.