Redução de dimensionalidade aplicada a sistemas de radiolocalização por regressão direta em regiões com diferentes níveis de urbanização

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: SILVA, Gabriel Wanderley Albuquerque
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/44642
Resumo: A difusão do uso de dispositivos móveis (DMs) tem estimulado a adoção de inúmeros serviços baseados em localização que, por sua vez, dependem de técnicas de localização em redes sem fio. Apesar do sistema de posicionamento global ser uma das principais técnicas usadas para fornecer a localização de DM, sua acurácia depende fortemente da existência de linha de visada entre transmissor e receptor. Para evitar tal desvantagem, técnicas de radiolocalização baseadas nos níveis de potência do sinal de rádiofrequência (RF) recebidos são amplamente utilizadas. Uma dessas técnicas, chamada de método de localização por regressão direta (LRD), emprega algoritmos de aprendizado de máquina para fazer a predição das coordenadas geográficas do DM. Face ao exposto, este trabalho analisou a aplicação do método LRD em duas regiões com diferentes níveis de urbanização. Nas regiões consideradas, bases de dados contendo níveis de sinal de RF de três gerações de redes celulares foram construídas, de forma unificada, assim como segmentada por rede, a partir de coleta via crowdsourcing. O primeiro aspecto da análise foi a robustez do método de localização em função do nível de urbanização das regiões consideradas. O método LRD se mostrou mais estável (diminuição do erro médio de predição em função do aumento do conjunto de treinamento) na região com maior nível de urbanização e mais eficiente quando aplicado à rede 3G em ambas as regiões. Além de fatores relacionados aos diferentes níveis de urbanização das regiões investigadas, o aumento esperado da quantidade de estações rádiobase com a implantação de redes de próxima geração também é relevante para a aplicabilidade do método LRD. Assim, o segundo aspecto analisado foi o efeito da redução de dimensionalidade na acurácia e nos tempos de execução do método LRD. Para isso, cinco algoritmos de extração de características (AECs), três lineares e dois não-lineares, foram considerados. Resultados experimentais mostraram que os AECs não-lineares obtiveram melhores resultados que os AECs lineares. Dentre os AECs não- lineares, o algoritmo KPCA-Sigmoide diminuiu o erro médio do método LRD em até 15% quando comparado ao erro do método LRD sem o uso de AECs. Além disso, o algoritmo KPCA-Sigmoide causou uma diminuição aproximada de sete vezes no tempo de treinamento e de aproximadamente quatro vezes no tempo de predição do método LRD, sem prejudicar a acurácia da localização.