Turing´s analysis of computation and artificial neural network

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: OLIVEIRA JUNIOR, Wilson Rosa de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/1970
Resumo: Inspirado por uma sugestão de McCulloch e Pitts em seu trabalho pioneiro, uma simulação de Máquinas de Turing (MT) por Redes Neurais Artifiais (RNAs) apresentada. Diferente dos trabalhos anteriores, tal simulação está de acordo com a interpretação correta da análise de Turing sobre computação; é compatvel com as abordagens correntes para análise da cognição como um processo interativo agente-ambiente; e é fisicamente realizável uma vez que não se usa pesos nas conexãos com precisão ilimitada. Uma descrição completa de uma implementação de uma MT universal em uma RNA recorrente do tipo sigmóide é dada. A fita, um recurso infinito, é deixada fora da codificação como uma caracterstica externa não-intrínsica. A rede resultante é chamada de Máquina de Turing Neural. O modelo clássico de computação Máquina de Turing = Fita + Autômato de Estados Finito (AEF) é trocado pelo modelo de computação neural Máquina de Turing Neural (MTN) = Fita + Rede Neural Artifial (RNA) Argumentos para plausabilidade física e cognitiva desta abordagem são fornecidos e as consequências matemáticas são investigadas. E bastante conhecido na comunidade de neurocomputação teórica, que um AEF arbitrário não pode ser implementado em uma RNA quando ruído ou limite de precisão é considerado: sob estas condições, sistemas analógicos em geral, e RNA em particular, são computacionalmente equivalentes aos Autômatos Definidos uma classe muita restrita de AEF. Entre as principais contribuições da abordagem proposta é a definição de um novo modelo de máquina, Máquina de Turing Definida(MTD), que surge quando ruído é levado em consideração. Este resultado reflete na segunda equação descrita acima se tornando MTN com ruíıdo (MTN) = Fita + RNA com ruído(RNA) com a equação correspondente Máquina de Turing Definida = Fita + Autômatos Finitos Definidos (AFD) A investigação de capacidades computacionais das Máquinas de Turing Definida é uma outra contribuição importante da Tese. É provado que elas computam a classe das funções elementares (Brainerd & Landweber, 1974) da Teoria da Recursão