Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
GONÇALVES, Pedro Rodolfo da Silva |
Orientador(a): |
ARAÚJO, Aluízio Fausto Ribeiro |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Ciencia da Computacao
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/14920
|
Resumo: |
Punir infrações de trânsito, controlar tráfego em rodovias, controlar o acesso a áreas restritas, entre outras, são ações tomadas para melhorar o trânsito nas grandes cidades. Para realizar tais ações é necessário, portanto, identificar o veículo automotivo, utilizando, para isso, sua placa de licenciamento. Entretanto, com o aumento de automóveis nas vias urbanas, essa tarefa tornou-se muito difícil de ser realizada de uma forma eficiente por apenas agentes de trânsito, pois existe uma grande quantidade de dados a serem analisados e reportados aos órgãos competentes. Soma-se a isso, o fato de fatores emocionais, cansaços físico e mental, inerentes aos seres humanos, atrapalharem a eficácia da tarefa executada. Por isso, ferramentas que realizam o reconhecimento ótico de caracteres, Opitcal Character Recognition (OCR), vem sendo cada vez mais empregadas para realizar a identificação automática de caracteres existentes nas placas dos automóveis. Este trabalho visa descrever um sistema para identificação de veículos automotivos através de imagens estáticas, apresentando técnicas pesquisadas e estudadas em cada etapa do processo de identificação. As etapas que são apresentadas e detalhadas incluem: a identificação da placa, segmentação dos caracteres presentes na placa e o reconhecimento dos caracteres isolados. Técnicas envolvendo processamento digital de imagem como detectores de bordas, operações morfológicas, análise de componentes conectados e limiarização serão explicitadas. Redes neurais artificias são propostas para realizar o reconhecimento do caractere isolado, tais como Self-Organizing Maps (SOM) e Kernel Self-Organizing Map (KSOM), e serão pormenorizadas. Para avaliar o desempenho das técnicas empregadas nesse projeto, imagens presentes na base de dados MediaLab LPR Database foram utilizadas. Métricas como Recall, Precision e F-Score foram empregadas na avaliação de performance dos diferentes algoritmos estudados e implementados para realizar a detecção da placa, ajudando na escolha do extrator da placa do sistema final. No estágio de segmentação da placa e do reconhecimento dos caracteres isolados, a taxa de acerto foi utilizada para avaliar os algoritmos propostos. Para um grupo de 276 imagens pertencentes a uma base pública, as etapas de detecção, segmentação e reconhecimento alcançaram desempenhos semelhantes aos vigentes na literatura ANAGNOSTOPOULOS et al. (2006) e propiciaram, aproximadamente, uma taxa de acerto global do sistema OCR proposto de 85%. |