Numerical Determination of Local Models in Networks

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: SILVA FILHO, José Mário da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Fisica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/45707
Resumo: Taking advantage of the fact that the cardinalities of hidden variables in network scenarios can be taken to be finite without loss of generality, a numerical tool for finding explicit local models that reproduce a given statistical behaviour was developed. The numerical procedure was then applied to get numerical estimates to two interesting problems in the context of network non-locality: i) for which critical visibility the Greenberger-Horne-Zeilinger (GHZ) distribution ceases to be local in the triangle scenario with no inputs; ii) what is the boundary of the local set in a given 2-dimensional slice of the probability space for the bilocal network with binary inputs and outputs. For the first problem: a critical visibility of v ≈ 1/3 was found; behaviours with v ≤ 1/3 were proven to be trilocal; and numerical evidence that behaviours with v > 1/3 are not trilocal was found. For the second problem: a closed set that approximates the bilocal set was found; behaviours inside this set were proven to be bilocal; and numerical evidence that behaviours outside this set are not bilocal was found.