MIMPCA: uma abordagem robusta para extração de características aplicada à classificação de faces

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Francisco Pereira, José
Orientador(a): Darmiton da Cunha Cavalcanti, George
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
PCA
Link de acesso: https://repositorio.ufpe.br/handle/123456789/2289
Resumo: É crescente a necessidade de controle de acesso a lugares, serviços e informações. É crescente também a busca por soluções mais eficientes na identificação pessoal. Neste contexto, a biometria, que consiste no uso de características biológicas como mecanismo de identificação, tem sido utilizada com resultados bastante promissores. Dentre as informações utilizadas para identificação dos indivíduos podem ser destacadas a íris, a retina, a face, a impressão digital ou até mesmo a geometria da mão. Dentre as biometrias, o reconhecimento de faces destaca-se por ser uma técnica que apresenta ótimos resultados com baixo custo de implantação. Ela pode ser utilizada nos mais diversos tipos de dispositivos e, em sua forma mais simples, não exige hardware dedicado. A técnica destaca-se ainda por não necessitar da interação do usuário ou qualquer tipo de contato físico para captura e classificação das faces. O presente trabalho é focado no reconhecimento de faces baseado em imagens (2D). Mais precisamente o trabalho visa reduzir ou eliminar os efeitos de variações no ambiente ou na própria face que prejudiquem a sua classificação final. As técnicas examinadas e propostas fazem uso da análise de componentes principais (PCA) para extração de características das imagens de faces frontais. Elas baseiam-se em estudos recentes com o objetivo de melhorar as taxas de classificação mesmo sob condições adversas de aquisição de imagens ou oclusão parcial das faces. Os resultados obtidos mostraram uma superioridade nas taxas de acerto das abordagens propostas em relação às suas técnicas-base quando executadas sobre imagens com algum tipo de variação local. Foi constatado também um grande ganho no tempo de processamento das imagens, o que contribui para aplicar as técnicas propostas em dispositivos com menor capacidade computacional