Detalhes bibliográficos
Ano de defesa: |
2008 |
Autor(a) principal: |
Salgado Gomes de Mattos Neto, Paulo |
Orientador(a): |
Crispim Vasconcelos, Germano |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/2047
|
Resumo: |
De forma geral, as abordagens descritas na literatura utilizam apenas a própria série para realizar a previsão, descartando a série de resíduos proveniente da diferença entre os dados reais da série e a previsão do modelo. Os métodos tradicionais de inteligência artificial não tratam a série de resíduos, considerando assim que essa série tenha o comportamento de um ruído branco, contendo pouca ou nenhuma informação relevante. Estudos realizados em torno das séries de resíduos, geradas pelo Método Time-lag Added Evolutionary Forecasting Method(TAEF), possibilitaram a constatação da não existência de características de ruído branco, mas conjuntos de padrões que detém informações relevantes que podem ser captadas pelo método. Com base nesses estudos e inspirado na Teoria da Perturbação, um conceito já comumente usado em outros ramos da ciência, o Método Perturbative Time-lag Added Evolutionary Forecasting Method (Método P-TAEF) foi desenvolvido para tratamento e previsão das séries residuais. A Teoria da Perturbação é semelhante a uma expansão de potências, como na expansão de Taylor, onde cada termo acrescentado à expansão introduz um fator de correção, que converge para a solução real do problema. Vários experimentos foram realizados com o Método P-TAEF com séries temporais com diferentes características. Foram utilizadas séries de natureza e complexidade distintas, de tal modo a comprovar a eficiência do método proposto. Foi testado um conjunto de sete séries, sendo uma artificial (série do Mapa de Hénon), duas de fenômenos da natureza (série das Manchas Solares e série de Medidas do Brilho de uma Estrela) e quatro séries econômico-financeiras (Índice Dow Jones Industrial Average, Índice Nasdaq,´ Índice S&P500 e valores de Fechamento das Ações da Petrobras (PetrobrasON)). Os experimentos foram comparados com técnicas tradicionais de IA encontradas na literatura e com o Método TAEF |