Teoria da perturbação em sistemas híbridos inteligentes para a previsão de séries temporais

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Salgado Gomes de Mattos Neto, Paulo
Orientador(a): Crispim Vasconcelos, Germano
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/2047
Resumo: De forma geral, as abordagens descritas na literatura utilizam apenas a própria série para realizar a previsão, descartando a série de resíduos proveniente da diferença entre os dados reais da série e a previsão do modelo. Os métodos tradicionais de inteligência artificial não tratam a série de resíduos, considerando assim que essa série tenha o comportamento de um ruído branco, contendo pouca ou nenhuma informação relevante. Estudos realizados em torno das séries de resíduos, geradas pelo Método Time-lag Added Evolutionary Forecasting Method(TAEF), possibilitaram a constatação da não existência de características de ruído branco, mas conjuntos de padrões que detém informações relevantes que podem ser captadas pelo método. Com base nesses estudos e inspirado na Teoria da Perturbação, um conceito já comumente usado em outros ramos da ciência, o Método Perturbative Time-lag Added Evolutionary Forecasting Method (Método P-TAEF) foi desenvolvido para tratamento e previsão das séries residuais. A Teoria da Perturbação é semelhante a uma expansão de potências, como na expansão de Taylor, onde cada termo acrescentado à expansão introduz um fator de correção, que converge para a solução real do problema. Vários experimentos foram realizados com o Método P-TAEF com séries temporais com diferentes características. Foram utilizadas séries de natureza e complexidade distintas, de tal modo a comprovar a eficiência do método proposto. Foi testado um conjunto de sete séries, sendo uma artificial (série do Mapa de Hénon), duas de fenômenos da natureza (série das Manchas Solares e série de Medidas do Brilho de uma Estrela) e quatro séries econômico-financeiras (Índice Dow Jones Industrial Average, Índice Nasdaq,´ Índice S&P500 e valores de Fechamento das Ações da Petrobras (PetrobrasON)). Os experimentos foram comparados com técnicas tradicionais de IA encontradas na literatura e com o Método TAEF