Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
MACIEL, Andrilene Ferreira |
Orientador(a): |
LIMA, Manoel Eusébio de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Ciencia da Computacao
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/18044
|
Resumo: |
A implementação dos algoritmos genéticos (AGs) inspirados no modelo de Holland em hardware para filtrar sinais visa acelerar o tempo de convergência desses algoritmos através da implementação dos módulos considerados um gargalo para uma implementação em software. Porém estes módulos apresentam os mesmos problemas com a representação do cromossomo, a dependência dos operadores genéticos e a representação adotada para o cromossomo e a população, e a perda de cromossomos com características relevantes para a solução do problema ao qual o AG está sendo aplicado. Esta tese apresenta um filtro adaptativo que adota o algoritmo genético baseado em tipos de dados abstratos (GAADT), para o processamento de sinais de ECG, denominado de CGAADT, na plataforma GPU/CUDA. O CGAADT desenvolvido apresenta uma solução de alto desempenho. A escolha por este modelo de algoritmo genético justifica-se pelo fato do GAADT ter sido definido com o intuito de evitar os problemas dos modelos de AG até então encontrados na literatura de computação evolucionária. O GAADT trabalha com uma arquitetura aberta que considera a dinâmica do ambiente o qual os cromossomos estão inseridos, ou seja, a função de adaptação do GAADT busca o cromossomo da população mais adaptado ao ambiente, se este ambiente mudar então a busca realizada pelo GAADT será redirecionado para o cromossomo mais adaptado ao ambiente atual, em tempo de execução, sem a necessidade de interromper a execução atual do GAADT. O resultado obtido pelo GAADT é de melhor qualidade do que os outros modelos de AGs uma vez que este trabalha a definição de gene dominante, que são as informações presentes nos cromossomos relevantes para a solução do problema. Provocando uma explosão exponencial na população do GAADT, na busca por um cromossomo mais adaptado que contenha a maior quantidade possível de genes dominantes, o que pode levar meses de processamento até a coleta de dados em arquiteturas de CPUs convencionais. Um estudo comparativo entre a qualidade dos resultados obtidos ao filtrar os sinais de ECG de pacientes com arritmias sinusal, flutter atrial e fibrilação atrial do CGAADT com outros modelos é apresentado. As experiências avaliadas neste estudo indicam que o CGAADT apresenta uma versão otimizada do GAADT, que permite que todo o processamento do algoritmo genético, seja realizado na GPU, o que resultou em um ganho no tempo total médio do processamento do algoritmo em 17,43% na seleção, 1,39% no cruzamento, 1,12% na mutação, 9,02% na reprodução, 15,11% no processo de inserção de descendentes na população. Tais índices representam um ganho de tempo de processamento de 73,6% relacionado ao algoritmo genético de Holland. |