Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
DELGADO, Reniê de Azevedo |
Orientador(a): |
BASSANI, Hansenclever de França |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Ciencia da Computacao
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/40293
|
Resumo: |
A sociedade vem passando por mudanças radicais nas últimas décadas. Cada vez mais, aparelhos inteligentes surgem no nosso dia-a-dia com o intuito de nos trazer comodidades. Empresas que atuam em diversas áreas de mercado tem investido cada vez mais em algoritmos de inteligência artificial. Apesar dos enormes avanços da última década, os algoritmos mais modernos ainda estão longe de construir, generalizar e inferir conhecimentos como humanos. Essas limitações por muitas vezes limitam o escopo que esses algoritmos podem atuar e trazem vulnerabilidades neles. Para que máquinas possam realmente estar presentes nos mais diversos ambientes do cotidiano elas precisam aprender a interagir com o mundo e se adaptar a ele. Robôs inteligentes são agentes que conseguem inferir conhecimentos a partir das observações retiradas do seu ambiente que garantam a autonomia do robô em executar a tarefa. O controle do robô do seu próprio corpo de forma adequada é uma característica fundamental, que deve ser aprendida por qualquer agente que precise atuar em um ambiente. Um agente com essas características pode ser aplicado em diversas tarefas. Esta dissertação utiliza aprendizagem de máquina, prioritariamente com o paradigma de aprendizagem por reforço, para estudar como agentes se comportam em ambientes dinâmicos e complexos para realizar uma tarefa comum a todos. O intuito é, posteriormente, aplicar a melhor técnica estudada em robôs reais e participar de uma competição real para avaliar o desempenho da estratégia aprendida. Este trabalho visa investigar e contribuir para o avanço da área de aprendizagem de comportamentos para o mundo real, construindo um ambiente de aprendizagem por reforço fiel à realidade e analisando sempre o tradeoff entre dificuldade de simulação e velocidade de aprendizagem. Utilizando o ambiente criado treinar agentes simulados capazes de performar bem no jogo de futebol de robôs e conseguir transferir o comportamento aprendido para um robô real de forma que seu comportamento fique fiel ao aprendido em simulação. |