Métodos de classificação e bondade de ajuste na análise de formas planas

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: CARVALHO, Jhonnata Bezerra de
Orientador(a): AMARAL, Getulio Jose Amorim do
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso embargado
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Programa de Pos Graduacao em Estatistica
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/35508
Resumo: O objetivo da análise estatística de forma é estudar a forma dos objetos com base em pontos de referência, chamados de marcos. O caso mais comum são as formas planas em que coordenadas bidimensionais são estudadas. Existem vários tipos de sistemas para se trabalhar com esse tipo de dados, um deles é a pré-forma. A matriz de configuração é transformada em um vetor complexo, no qual os efeitos de locação e escala são removidos. Alguns métodos de aprendizado supervisionado para as pré-formas são propostos neste trabalho. Os métodos de aprendizado supervisionado são usados para classificar um objeto com base em suas informações de rótulo. O método principal é baseado em um algoritmo de máquina de vetores de suporte. Outros métodos foram baseados na estimação de densidade, classificador de Bayes, kernel k-médias, hill-climbing, por fim, uma combinação entre os classificadores utilizando o método ensemble. Experimentos de simulações e análises de dados reais, indicam que o algoritmo de máquina de vetores de suporte supera os outros métodos considerados quando os dados são pouco concentrados. Adicionalmente, um estudo sobre bondade de ajuste foi realizado para a distribuição Watson complexa e Bingham complexa com a utilização dos testes da razão de verossimilhanças, Kolmogorov-Smirnov, Cramér-von Mises e Anderson-Darling. Os testes foram realizados com a utilização do método bootstrap em uma transformação obtida por meio da aproximação dessas distribuições para normal multivariada complexa singular. Experimentos de simulações foram feitos e os testes obtiveram bons resultados, em relação ao tamanho e poder do teste. Por fim, os resultados foram ilustrados na análise de dados reais.